PALCE29MA16H-25

24-Pin EE CMOS Programmable Array Logic

V A N \boldsymbol{N} I I S
ANAMD COMPANY

DISTINCTIVE CHARACTERISTICS

■ High-performance semicustom logic replacement; Electrically Erasable (EE) technology allows reprogrammability

- 16 bidirectional user-programmable I/O logic macrocells for Combinatorial/Registered/ Latched operation
- Output Enable controlled by a pin or product terms
- Varied product term distribution for increased design flexibility
- Programmable clock selection with common pin clock/latch enable (LE) or individual product term clock/LE with LOW/HIGH clock/ LE polarity

Register/Latch Preload permits full logic verification

- High speed ($\mathrm{tpd}_{\mathrm{D}}=\mathbf{2 5} \mathbf{n s}$, $\mathrm{f}_{\text {max }}=33 \mathrm{MHz}$ and $\mathrm{f}_{\text {max }}$ internal $=50 \mathrm{MHz}$)
- Full-function AC and DC testing at the factory for high programming and functional yields and high reliability
- 24-pin 300 mil SKINNYDIP and 28-pin plastic leaded chip carrier packages
- Extensive third-party software and programmer support through FusionPLD partners

GENERAL DESCRIPTION

The PALCE29MA16 is a high-speed, EE CMOS Programmable Array Logic (PAL) device designed for general logic replacement in TTL or CMOS digital systems. It offers high speed, low power consumption, high
programming yield, fast programming, and excellent reliability. PAL devices combine the flexibility of custom logic with the off-the-shelf availability of standard products, providing major advantages over other

BLOCK DIAGRAM

08811G-1

GENERAL DESCRIPTION (continued)

semicustom solutions such as gate arrays and standard cells, including reduced development time and low upfront development cost.

The PALCE29MA16 uses the familiar sum-of-products (AND-OR) structure, allowing users to customize logic functions by programming the device for specific applications. It provides up to 29 array inputs and 16 outputs. It incorporates AMD's unique input/output logic macrocell which provides flexible input/output structure and polarity, flexible feedback selection, multiple Output Enable choices, and a programmable clocking scheme. The macrocells can be individually programmed as combinatorial, registered, or latched with active-HIGH or active-LOW polarity. The flexibility of the logic macrocells permits the system designer to tailor the device to particular application requirements.
Increased logic power has been built into the PALCE29MA16 by providing a varied number of logic
product terms per output. Of the 16 outputs, 8 outputs have 4 product terms each, 4 outputs have 8 product terms each, and the other 4 outputs have 12 product terms each. This varied product-term distribution allows complex functions to be implemented in a single PAL device. Each output can be dynamically controlled by a common Output Enable pin or Output Enable product term. Each output can also be permanently enabled or disabled.

System operation has been enhanced by the addition of common asynchronous-Preset and Reset product terms and a power-up Reset feature. The PALCE29MA16 also incorporates Preload and Observability functions which permit full logic verification of the design.

The PALCE29MA16 is offered in the space-saving 300-mil SKINNYDIP package as well as the plastic leaded chip carrier package.

CONNECTION DIAGRAMS

Top View

SKINNYDIP

08811G-2
Pin 1 is marked for orientation.

PIN DESIGNATIONS

CLK/LE	$=$ Clock or Latch Enable
GND	$=$ Ground
I	$=$ Input
I / O	$=$ Input/Output
I/OF	$=$ Input/Output with Dual Feedback
Vcc	$=$ Supply Voltage
NC	$=$ No Connection

ORDERING INFORMATION

Commercial Products

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of these elements:

FUNCTIONAL DESCRIPTION
 Inputs

The PALCE29MA16 has 29 inputs to drive each product term (up to 58 inputs with both TRUE and complement versions available to the AND array) as shown in the block diagram in Figure 1. Of these 29 inputs, 4 are dedicated inputs, 16 are from eight I/O logic macrocells with two feedbacks, 8 are from other I/O logic macrocells with single feedback and one is the I/OE input.

Initially the AND-array gates are disconnected from all the inputs. This condition represents a logical TRUE for the AND array. By selectively programming the EE cells, the AND array may be connected to either the TRUE input or the complement input. When both the TRUE and complement inputs are connected, a logical FALSE results at the output of the AND gate.

Product Terms

The degree of programmability and complexity of a PAL device is determined by the number of connections that form the programmable-AND and OR gates. Each pro-grammable-AND gate is called a product term. The PALCE29MA16 has 178 product terms; 112 of these product terms provide logic capability and others are architectural product terms. Among the control product terms, one is for Observability, and one is for Preload. The Output Enable of each macrocell can be programmed to be controlled by a common Output Enable pin or an individual product term. It may also be permanently disabled. In addition, independent product terms for each macrocell control Preset, Reset and CLK/LE.

Each product term on the PALCE29MA16 consists of a 58 -input AND gate. The outputs of these AND gates are connected to a fixed-OR plane. Product terms are allocated to OR gates in a varied distribution across the
device ranging from 4 to 12 wide, with an average of 7 logic product terms per output. An increased number of product terms per output allows more complex functions to be implemented in a single PAL device. This flexibility aids in implementing functions such as counters, exclu-sive-OR functions, or complex state machines, where different states require different numbers of product terms.

Individual asynchronous-Preset and Reset product terms are connected to all Registered or Latched I/Os.
When the asynchronous-Preset product term is asserted (HIGH) the register or latch will immediately be loaded with a HIGH, independent of the clock. When the asynchronous-Reset product term is asserted (HIGH) the register or latch will be immediately loaded with a LOW, independent of the clock. The actual output state will depend on the macrocell polarity selection. The latches must be in latched mode (not transparent mode) for the Reset, Preset, Preload, and power-up Reset modes to be meaningful.

Input/Output Logic Macrocells

The I/O logic macrocell allows the user the flexibility of defining the architecture of each input or output on an individual basis. It also provides the capability of using the associated pin either as an input or an output.
The PALCE29MA16 has 16 macrocells, one for each I/O pin. Each I/O macrocell can be programmed for combinatorial, registered or latched operation (see Figure 2). Combinatorial output is desired when the PAL device is used to replace combinatorial glue logic. Registers and Latches are used in synchronous logic applications. Registers and Latches with product term controlled clocks can also be used in asychronous application.

Figure 2a. PALCE29MA16 Macrocell (Single Feedback)

The output polarity for each macrocell in each of the three modes of operation is user-selectable, allowing complete flexibility of the macrocell configuration.

Eight of the macrocells ($1 / \mathrm{OF}_{0}-\mathrm{l} / \mathrm{OF}_{7}$) have two independent feedback paths to the AND array (see Figure 2b). The first is a dedicated I/O pin feedback to the AND array for combinatorial input. The second path consists of a direct register/latch feedback to the array. If the pin is used as a dedicated input using the first feedback path, the register/latch feedback path is still available to the AND array. This path provides the capability of using the register/latch as a buried state register/latch. The other eight macrocells have a single feedback path to the AND array. This feedback is user-selectable as either an I/O pin or a register/latch feedback (see Figure 2a).
Each macrocell can provide true input/output capability. The user can select each macrocell register/latch to be driven by either the signal generated by the AND-OR array or the corresponding I/O pin. When the I/O pin is selected as the input, the feedback path provides the register/latch input to the array. When used as an input, each macrocell is also user-programmable for registered, latched, or combinatorial input.
The PALCE29MA16 has a dedicated CLK/LE pin and one individual CLK/ $\overline{L E}$ product term or macrocell. All macrocells have a programmable switch to choose between the CLK/LE pin and the CLK/LE product term as the clock or latch enable signal. These signals are clock signals for macrocells configured as registers and latch enable signals for macrocells configured as latches. The polarity of these CLK/LE signals is also individually programmable. Thus different registers or latches can be driven by different clocks and clock phases.

The Output-Enable mode of each of the macrocells can be selected by the user. The I/O pin can be configured as an output pin (permanently enabled) or as an input pin (permanently disabled). It can also be configured as
a dynamic l/O controlled by the Output Enable pin or by a product term.

I/O Logic Macrocell Configuration

AMD's unique $1 / O$ macrocell offers major benefits through its versatile, programmable input/output cell structure, multiple clock choices, flexible Output Enable and feedback selection. Eight I/O macrocells with single feedback contain 9 EE cells, while the other eight macrocells contain 8 EE cells for programming the input/ output functions (see Table 1).

EE cell S_{1} controls whether the macrocell will be combinatorial or registered/latched. So controls the output polarity (active-HIGH or active-LOW). S_{2} determines whether the storage element is a register or a latch. S_{3} allows the use of the macrocell as an input register/latch or as an output register/latch. It selects the direction of the data path through the register/latch. If connected to the usual AND-OR array output, the register/latch is an output connected to the I/O pin. If connected to the I/O pin, the register/latch becomes an input register/latch to the AND array using the feedback data path.
Programmable EE cells S_{4} and S_{5} allow the user to select one of the four CLK/LE signals for each macrocell. S_{6} and S_{7} are used to control Output Enable as pin controlled, product-term controlled, permanently enabled or permanently disabled. S_{8} controls a feedback multiplexer for the macrocells with a single feedback path only.
Using the programmable EE cells $\mathrm{S}_{0}-\mathrm{S}_{8}$ various input and output configurations can be selected. Some of the possible configuration options are shown in Figure 3.
In the erased state (charged, disconnected), an architectural cell is said to have a value of " 1 "; in the programmed state (discharged, connected to GND), an architectural cell is said to have a value of " 0 ."

Figure 2b. PALCE29MA16 Macrocell (Dual Feedback)

Table 1a. PALCE29MA16 I/O Logic Macrocell Architecture Selections

\mathbf{S}_{3}	I/O Cell
1	Output Cell
0	Input Cell

$\mathbf{S}_{\mathbf{2}}$	Storage Element
1	Register
0	Latch

\mathbf{S}_{1}	Output Type
1	Combinatorial
0	Register/Latch

S_{0}	Output Polarity
1	Active LOW
0	Active HIGH

S_{8}	Feedback *
1	Register/Latch
0	I / O

*Applies to macrocells with single feedback only.

Table 1b. PALCE29MA16 I/O Logic Macrocell Clock Polarity and Output Enable Selections

S4	S5	Clock Edge/Latch Enable Level
1	1	CLK/衰 pin positive-going edge, active-LOW LE*
1	0	CLK/LE pin negative-going edge, active-HIGH LE*
0	1	CLK/LE PT positive-going edge, active-LOW LE*
0	0	CLK/LE PT negative-going edge, active-HIGH LE*

\mathbf{S}_{6}	\mathbf{S}_{7}	Output Buffer Control
1	1	Pin-Controlled Three-State Enable
1	0	PT-Controlled Three-State Enable
0	1	Permanently Enabled (Output only)
0	0	Permanently Disabled (Input only)

Notes:

1 = Erased State (Charged or disconnected).
0 = Programmed State (Discharged or connected).
*Active-LOW LE means that data is stored when the $\overline{\text { LE }}$ pin is HIGH, and the latch is transparent when the $\overline{\mathrm{LE}}$ pin is LOW. Active-HIGH LE means the opposite.

SOME POSSIBLE CONFIGURATIONS OF THE INPUT/OUTPUT LOGIC MACROCELL
(For other useful configurations, please refer to the macrocell diagrams in Figure 2. All macrocell architecture cells are independently programmable).

Output Registered/Active Low

Output Registered/Active High

08811G-7
Output Combinatorial/Active Low

Output Combinatorial/Active High

Figure 3a. Dual Feedback Macrocells

08811G-10
Output Registered/Active Low, I/O Feedback

08811G-12
Output Latched/Active High, I/O Feedback

Output Combinatorial/Active Low, I/O Feedback

Output Combinatorial/Active High, I/O Feedback

Figure 3b. Single Feedback Macrocells

SOME POSSIBLE CONFIGURATIONS OF THE INPUT/OUTPUT LOGIC MACROCELL

Output Registered/Active Low, Register Feedback

Output Latched/Active Low, Latched Feedback

08811G-15
Output Combinatorial/Active Low, Latched Feedback

08811G-17
Output Combinatorial/Active Low, Latched Feedback

Figure 3b. Single Feedback Macrocells (Continued)

Programmable-AND Array

Figure 3c. All Macrocells

Power-Up Reset

All flip-flops power up to a logic LOW for predictable system initialization. The outputs of the PALCE29MA16 depend on whether they are selected as registered or combinatorial. If registered is selected, the output will be LOW if programmed as active LOW and HIGH if programmed as active HIGH. If combinatorial is selected, the output will be a function of the logic.

Preload

To simplify testing, the PALCE29MA16 is designed with preload circuitry that provides an easy method for testing logical functionality. Both product-term-controlled and supervoltage-enabled preload modes are available. The TTL-level preload product term can be useful during debugging, where supervoltages may not be available.

Preload allows any arbitrary state value to be loaded into the registers/latches of the device. A typical func-tional-test sequence would be to verify all possible state transitions for the device being tested. This requires the ability to set the state registers into an arbitrary "present state" value and to set the device's inputs into an arbitrary "present input" value. Once this is done, the state machine is clocked into a new state, or "next state," which can be checked to validate the transition from the "present state." In this way any transition can be checked.

Since preload can provide the capability to go directly to any desired arbitrary state, test sequences may be greatly shortened. Also, all possible states can be tested, thus greatly reducing test time and development costs and guaranteeing proper in-system operation.

Observability

The output register/latch observability product term, when asserted, suppresses the combinatorial output data from appearing on the I/O pin and allows the observation of the contents of the register/latch on the output
pin for each of the logic macrocells. This unique feature allows for easy debugging and tracing of the buried state machines. In addition, a capability of supervoltage observability is also provided.

Security Cell

A security cell is provided on each device to prevent unauthorized copying of the user's proprietary logic design. Once programmed, the security cell disables the programming, verification, preload, and the observability modes. The only way to erase the protection cell is by erasing the entire array and architecture cells, in which case no proprietary design can be copied. (This cell should be programmed only after the rest of the device has been completely programmed and verified.)

Programming and Erasing

The PALCE29MA16 can be programmed on standard logic programmers. It may also be erased to reset a previously configured device back to its virgin state. Erasure is automatically performed by the programming hardware. No special erasure operation is required.

Quality and Testability

The PALCE29MA16 offers a very high level of built-in quality. The erasability of the device provides a direct means of verifying performance of all the AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to yield the highest programming yield and post-programming functional yield in the industry.

Technology

The high-speed PALCE29MA16 is fabricated with AMD's advanced electrically-erasable (EE) CMOS process. The array connections are formed with proven EE cells. Inputs and outputs are designed to be compatible with TTL devices. This technology provides strong input-clamp diodes, output slew-rate control, and a grounded substrate for clean switching.

1 AMD

LOGIC DIAGRAM
 SKINNY DIP (PLCC) Pinouts

LOGIC DIAGRAM
SKINNY DIP (PLCC) Pinouts

ABSOLUTE MAXIMUM RATINGS

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature
with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage with
Respect to Ground \qquad
DC Input Voltage \qquad -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
DC Output or I/O
Pin Voltage -0.5 V to $\mathrm{Vcc}+0.5 \mathrm{~V}$
Static Discharge Voltage 2001 V
Latchup Current $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$
...... 100 mA
Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices

Ambient Temperature (T_{A})
Operating in Free Air $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Supply Voltage (Vcc)
with Respect to Ground +4.75 V to +5.25 V
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	$\frac{\text { Unit }}{\mathrm{V}}$
Voh	Output HIGH Voltage	$\mathrm{IOH}=-2 \mathrm{~mA}$	$\begin{aligned} & \mathrm{VIN}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{VIL} \\ & \mathrm{~V}_{\mathrm{IC}}=\mathrm{Min} \end{aligned}$	2.4		
Vol	Output LOW Voltage	$\mathrm{loL}=8 \mathrm{~mA}$	$\begin{aligned} & \mathrm{VIN}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \end{aligned}$		0.5	V
		$\mathrm{loL}=4 \mathrm{~mA}$			0.33	
		lot $=20 \mu \mathrm{~A}$			0.1	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)		2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)			0.8	V
IIH	Input HIGH Leakage Current	VIN $=5.5 \mathrm{~V}$, Vcc $=\mathrm{Max}$ (Note 2)			10	$\mu \mathrm{A}$
IIL	Input LOW Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{Vcc}=\mathrm{Max}$ (Note 2)			-10	$\mu \mathrm{A}$
lozh	Off-State Output Leakage Current HIGH	$\begin{aligned} & \text { VOUT }=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} \\ & \text { VIN }=\text { VIH or } \mathrm{V} \text { IL }(\text { Note } 2) \end{aligned}$			10	$\mu \mathrm{A}$
IozL	Off-State Output Leakage Current LOW	$\begin{aligned} & \text { Vout = 5.5 V, VCC = Max } \\ & \text { VIN = VIH or VIL (Note 2) } \end{aligned}$			-10	$\mu \mathrm{A}$
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max (Note 3)		-30	-130	mA
Icc	Supply Current	$\begin{aligned} & \text { VIN }=0 \mathrm{~V} \text {, Outputs Open }(\text { Iout }=0 \mathrm{~mA}) \\ & \mathrm{V} \mathrm{Cc}=\mathrm{Max} \end{aligned}$			100	mA

Notes:

1. These are absolute values with respect to device ground all overshoots due to system and/or tester noise are included.
2. I/O pin leakage is the worst case of $I_{I L}$ and $l_{\text {OZL }}$ (or $I_{I H}$ and $l_{\text {OZH }}$).
3. Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. $V_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions		Typ	Unit
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{~T} A=25^{\circ} \mathrm{C}$,	5	pF
Cout	Output Capacitance	VOUT $=0 \mathrm{~V}$	$\mathrm{f}=1 \mathrm{MHz}$	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS Registered Operation

Parameter Symbol	Parameter Description	Min	Max	Unit
Combinatorial Output				
tPD	Input or I/O Pin to Combinatorial Output		25	ns
Output Register - Pin Clock				
tSOR	Input or I/O Pin to Output Register Setup	15		ns
tCOR	Output Register Clock to Output		15	ns
tHOR	Data Hold Time for Output Register	0		ns
Output Register - Product Term Clock				
tsorp	I/O Pin or Input to Output Register Setup	4		ns
tcorp	Output Register Clock to Output		29	ns
thorp	Data Hold Time for Output Register	10		ns
Input Register - Pin Clock				
tSIR	I/O Pin to Input Register Setup	2		ns
tCIR	Register Feedback Clock to Combinatorial Output		28	ns
tHIR	Data Hold time for Input Register	6		ns
Clock and Frequency				
tcis	Register Feedback (Pin Driven Clock) to Output Register/Latch (Pin Driven) Setup	20		ns
tcIspp	Register Feedback (PT Driven Clock) to Output Register/Latch (PT Driven) Setup	25		ns
fmax	Maximum Frequency (Pin Driven) 1/(tsor + tcor)	33.3		MHz
fmaxi	Maximum Internal Frequency (Pin Driven) 1/tcIs	50		MHz
fmaxp	Maximum Frequency (PT Driven) 1/(tsorP + tcorp)	30		MHz
fmaxIPP	Maximum Internal Frequency (PT Driven) 1/tcISPP	40		MHz
tcwh	Pin Clock Width HIGH	8		ns
tcwL	Pin Clock Width LOW	8		ns
tcwhp	PT Clock Width HIGH	12		ns
tcwLP	PT Clock Width LOW	12		ns

08811G-21
Input/Output Register Specs (PT CLK Reference)

SWITCHING WAVEFORMS

SWITCHING WAVEFORMS

Pin Clock Width
08811G-26

SWITCHING CHARACTERISTICS

Latched Operation

Parameter Symbol	Parameter Description	Min	Max	Unit
Combinatorial Output				
tpD	Input or I/O Pin to Combinatorial Output		25	ns
tPTD	Input or I/O Pin to Output via Transparent Latch		28	ns
Output Latch - Pin LE				
tsol	Input or I/O Pin to Output Register Setup	15		ns
tGoL	Latch Enable to Transparent Mode Output		15	ns
thoL	Data Hold Time for Output Latch	0		ns
tstL	Input or I/O Pin to Output Latch Setup via Transparent Input Latch	18		ns
Output Latch - Product Term LE				
tsolp	Input or I/O Pin to Output Latch Setup	4		ns
tgolp	Latch Enable to Transparent Mode Output		29	ns
tholp	Data Hold Time for Output Latch	10		ns
tstLP	Input or I/O Pin to Output Latch Setup via Transparent Input Latch	10		ns
Input Latch - Pin LE				
tsIL	I/O Pin to Input Latch Setup	2		ns
tGIL	Latch Feedback, Latch Enable Transparent Mode to Combinatorial Output		28	ns
thil	Data Hold Time for Input Latch	6		ns
Latch Enable				
tGIS	Latch Feedback (Pin Driven) to Output Register/Latch (Pin Driven) Setup	20		ns
tGISPP	Latch Feedback (PT Driven) to Output Register/Latch (PT Driven) Setup	25		ns
tGWH	Pin Enable Width HIGH	8		ns
tGwL	Pin Enable Width LOW	8		ns
tGwhP	PT Enable Width HIGH	12		ns
tGWLP	PT Enable Width LOW	12		ns

Input/Output Latch Specs (Pin $\overline{\text { LE Reference) }}$

Input/Output Latch Specs (PT LE Reference)

SWITCHING WAVEFORMS

Note:
PT LE Width 08811G-36

1. If the combinatorial input changes while $\overline{\mathrm{LE}}$ is in the latched mode and $\overline{\mathrm{LE}}$ goes into the transparent mode after tPTD ns has elasped, the corresponding latched output will change tGOL ns after $\overline{\mathrm{LE}}$ goes into the transparent mode. If the combinatorial input changes while $\overline{\mathrm{LE}}$ is in the latched mode and $\overline{\mathrm{LE}}$ goes into the transparent mode before tPTD ns has elapsed, the corresponding latched output will change at the later of the following - tPTD ns after the combinatorial input changes or tGOL ns after $\overline{\mathrm{LE}}$ goes into the latched mode.

SWITCHING CHARACTERISTICS

Reset/Preset, Enable

Parameter Symbol	Parameter Description	Min	Max	Unit
tAPO	Input or I/O Pin to Output Register/Latch Reset/Preset		30	ns
taW	Asynchronous Reset/Preset Pulse Width	15		ns
tARO	Asynchronous Reset/Preset to Output Register/Latch Recovery	15	ns	
tARI	Asynchronous Reset/Preset to Input Register/Latch Recovery	4	ns	
tARPO	Asynchronous Reset/Preset to Output Register/Latch Recovery PT Clock/LE	6	ns	
tARPI	Asynchronous Reset/Preset to Input Register/Latch Recovery PT Clock/LE		ns	
Output Enable Operation		20	ns	
tPZx	I/OE Pin to Output Enable	20	ns	
tPXZ	I/OE Pin to Output Disable (Note 1)	25	ns	
tEA	Input or I/O to Output Enable via PT		25	ns
tER	Input or I/O to Output Disable via PT (Note 1)		n	

Note:

1. Output disable times do not include test load RC time constants.

SWITCHING WAVEFORMS

KEY TO SWITCHING WAVEFORMS

WAVEFORM	INPUTS Must be Steady	Will be Steady		
May				
Change				
from H to L			\quad	Will be
:---				
Changing				
from H to L				

KS000010-PAL

SWITCHING TEST CIRCUIT

Specification	Switch S1	CL	R1	R2	Measured Output Value
tPd, tco, tgol	Closed	35 pF	470Ω	390Ω	1.5 V
tea, tpzx	$\mathrm{Z} \rightarrow \mathrm{H}$: open Z \rightarrow L: closed				1.5 V
ter, tpxz	$H \rightarrow Z$: open $\mathrm{L} \rightarrow \mathrm{Z}$: closed	5 pF			$\begin{aligned} & \mathrm{H} \rightarrow \mathrm{Z}: \mathrm{VOH}-0.5 \mathrm{~V} \\ & \mathrm{~L} \rightarrow \mathrm{Z}: \mathrm{VoL}+0.5 \mathrm{~V} \end{aligned}$

PRELOAD

The PALCE29MA16 has the capability for product-term Preload. When the global-preload product term is true, the PALCE29MA16 will enter the preload mode. This feature aids functional testing by allowing direct setting of register states. The procedure for Preload is as follows:

- Set the selected input pins to the user selected preload condition.
- Apply the desired register value to the I/O pins. This sets Q of the register. The value seen on the I/O pin, after Preload, will depend on whether the macrocell is active high or active low.

■ Pulse the clock pin (pin 1).

- Remove the inputs to the I/O pins.
- Remove the Preload condition.
- Verify Vol/Voh for all output pins as per programmed pattern.
Because the Preload command is a product term, any input to the array can be used to set Preload (including I/O pins and registers). Preload itself will change the values of the I/O pins and registers. This will have unpredictable results. Therefore, only dedicated input pins should be used for the Preload command.

Parameter Symbol	Parameter Description	Min	Rec.	Max	Unit
tD	Delay Time	0.5	1.0	5.0	$\mu \mathrm{~s}$
tw	Pulse Width	250	500	700	ns
t/o	Valid Output	100		500	ns

Preload Waveform

OBSERVABILITY

The PALCE29MA16 has the capability for product-term Observability. When the global-Observe product term is true, the PALCE29MA16 will enter the Observe mode. This feature aids functional testing by allowing direct observation of register states.

When the PALCE29MA16 is in the Observe mode, the output buffer is enabled and the I/O pin value will be Q of the corresponding register. This overrides any $\overline{\mathrm{OE}}$ inputs.

The procedure for Observe is:

- Remove the inputs to all the I/O pins.

Observability Waveform

POWER-UP RESET

The registered devices in the AMD PAL Family have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to LOW. The output state will depend on the polarity of the output buffer. This feature provides extra flexibility to the designer and is especially valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the
asynchronous operation of the power-up reset, and the wide range of ways V_{cc} can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

- The V_{cc} rise must be monotonic.
- Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Min	Max	Unit	
tpR	Power-Up Reset Time		10	$\mu \mathrm{~s}$	
ts	Input or Feedback Setup Time	See Switching Characteristics			
tw	Clock Width				
tR	Vcc Rise Time	500		$\mu \mathrm{~s}$	

08811G-44
Power-Up Reset Waveform

TYPICAL THERMAL CHARACTERISTICS

Measured at $25^{\circ} \mathrm{C}$ ambient. These parameters are not tested.

Parameter Symbol	Parameter Description				Unit
			SKINNYDIP	PLCC	
$\theta \mathrm{jc}$	Thermal impedance, junction to case		17	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{ja}	Thermal impedance, junction to ambient		63	51	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ jma	Thermal impedance, junction to ambient with air flow	200 lfpm air	60	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		400 Ifpm air	52	38	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		600 Ifpm air	43	34	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		800 Ifpm air	39	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Plastic θj c Considerations

The data listed for plastic $\theta j c$ are for reference only and are not recommended for use in calculating junction temperatures. The heat-flow paths in plastic-encapsulated devices are complex, making the θj j measurement relative to a specific location on the package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package. Furthermore, $\theta j \mathrm{c}$ tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant temperature. Therefore, the measurements can only be used in a similar environment.

